
INTERMEDIATE TECHNICALREPORT

Floriane Plard
Independant freelance researcher, Barraque de la Pinatelle, Trémoulet, 15500

Molompize, France, floriane.c.plard@gmail.com

17/03/2024

Call 1
Assessment of species abundance, distribution and habitats in the

Pelagos Sanctuary, with a priority given to the Cuvier’s beaked

whale, the fin whale, the sperm whale and the bottlenose dolphin



Introduction

Within the main objectives of the Pelagos Sanctuary to implement the action
«Coexistence between marine mammals and use of the seas» of the management Plan and
relevant Action Plan 2022-2027, the aim of the call 1 is to estimate cetacean abundances and
distributions within the Pelagos Sanctuary. These estimates will provide information to help
assess the status of marine mammal populations in the Pelagos Sanctuary, creating an initial
status of the cetacean populations and identifying areas of high densities within the Pelagos
Sanctuary. The priority has been given to four species, particularly sensitive to human
activities: the bottlenose dolphin living close to coast and to human activities, the fin whale
impacted by collision with boats, and the sperm whale and the Cuvier’s beaked whale.

Abundance and density distribution are key population parameters. Abundance informs about
the status of a species in a region, and maps of population densities allow targeting the
preferential areas of presence (Wade 1998, Hammonds et al. 2021a, Waggitt et al. 2020).
Using these population characteristics grants taking informed decisions about population
management and conservation, accounting for threat and risk that might influence the
distribution of populations (Freeman 2008, Pace et al. 2015, Jewell et al. 2012).

Population abundance and maps of densities are particularly challenging to estimate in
cetaceans (Field et al. 2005, Hammond et al. 2021b, McPherson & Myers 2009). Among
several reasons, the natural seasonal and annual extensive movements of these species make
their distribution particularly variable among seasons and years. Moreover, the data required
to estimate cetacean densities are particularly costly to collect, making them often spatially
and temporally sparse and few in quantity. Usually, cetacean abundances in one region are
derived from a distance sampling survey covering the region homogeneously along ship or
aerial transects (Buckland et al. 1993). While often informative, a given survey reflects the
abundance of the population at the time the survey was done. In addition, the low densities of
some cetacean species and/or the low probability to detect animals, make the results of only
one survey quite uncertain (Hammond et al. 2013; 2021a, Laran et al. 2017, Waggitt et al.
2020).

Figure 1: Study area including the MFSD Western Mediterranean region (dark blue) and the Pelagos
Sanctuary (cyan).



The aim of this project is to gather multiple aerial and boat cetacean surveys from different areas
and to combine them to get more robust estimates of cetacean abundance and densities within the
Pelagos Sanctuary. Combining multiple surveys from different areas have several advantages. It
increases the precision of the results by gathering more detection data. It also attenuates the
temporal bias as different surveys are collected at different times of the year reflecting the variable
distribution of species in different seasons. It makes the relationships between environmental
variables and cetacean densities more robust. Thus, we chose to extend the studied region of the
Pelagos Sanctuary to the Western Mediterranean region (Figure 1) of the The Marine Strategy
Framework Directive (MFSD) to increase the number of data gathered and get more robust
estimates of cetacean densities and abundances.

Figure 2: Graphical presentation of the method and tasks that will be realized in this call. Adapted from
Plard et al. 2024



The different steps and tasks of this project to estimate cetacean abundance and densities from
the gathered data are outlined in Figure 2. After formatting and collating the different dataset,
this project will estimate detection probabilities for each species and survey. Then, based on
the relationship between marine environmental variables and cetacean densities along survey
transects, I will predict model based cetacean densities within the Pelagos Sanctuary. The
uncertainty associated with each prediction will be reported in the form of maps of
coefficients of variation of densities. Moreover, either the density predictions provided are
well informed by data or are fully extrapolated by the model will be analysed using a gap
analysis.

1/ Data Call

The Pelagos Secretariat has sent a formal data request to the coordinators of the
MFSD reports in Italy, Spain and France. The three countries have kindly agreed to
collaborate. Data collected with a distance sampling protocol only have been requested. The
three countries have provided the data on effort and sightings from distance sampling surveys
they have collected within the Western Mediterranean region (Table 1). Thus, all effort data
collected share a common protocol for recording sightings which is the distance sampling
protocol (Buckland et al. 1993). At each observation, the distance from the animal to the
observer as well as the angle between the animal and the transect line are collected. This
information is used to derive the perpendicular distances from the sightings to the transect
line and then, to be able to estimate detection probabilities. The detection probability, often
decreasing with distance from the transect line, is estimated using a distance sampling model.
This method allows estimating corrected animal densities, accounting for imperfect detection
of sightings on the transect. Thus, this protocol guarantees robust estimates of densities along
effort data.

Table 1: Summary of surveys collected by the Permanent Secretariat of the Pelagos Agreement.

SurveyID Platform Season
Effort
(km)

Years
In

Sanctuary

FR SAMM Plane

fall 5993 2011 Yes
spring 10908 2012 Yes
summer 7561 2012 Yes
winter 19309 2012, 2019 Yes

FR MOOSE Ship
spring 2443 2019, 2021 Yes
summer 141 2021 No

FR PELMED Ship
spring 577 2018, 2019, 2021 No
summer 5708 2017->2021 Yes

IT Pelagos Plane
winter 8542 2009 Yes
summer 8849 2009 Yes

IT PelaTir_2010 Plane
spring 11219 2010 Yes
summer 3856 2010 Yes

IT PelaTir_2020 Plane fall 18170 2020 Yes



summer 941 2020 No

IT ISPRA23A Plane
fall 6994 2023 Yes
summer 2781 2023 No

IT ISPRA23S Plane
spring 3099 2023 No
summer 8113 2023 Yes

SP ICCAT Plane spring 12408 2015 No
SP MEDIAS Ship summer 2613 2022, 2023 No
SP DMESAL Plane summer 2096 2023 No
SP DMLEBA Plane summer 5486 2023 No

A/ Italy
The surveys provided by Italy (Figure 3) covered the East part of the Western Mediterranean
region, covering the Pelagos Sanctuary in recent and old years. They total 72564 km of effort.
These aerial surveys included the ISPRA surveys conducted in summer and fall 2023, the
PelaTir surveys conducted in 2010 and 2020, and the oldest survey collected so far; the
Pelagos survey conducted in winter and summer 2009. However, for this last survey, I still did
not receive the sightings data in an exploitable format. Nevertheless, as I expect to get these
cetacean sightings soon, the effort of this survey is included in this report.

Figure 3: Spatial coverage of aerial surveys shared by Italy.

B/ France
The surveys provided by France (Figure 4) include two ship surveys MOOSE and PELMED
conducted from 2017 to 2021 and the aerial large survey SAMM conducted in 2012 and 2019.
They cover mainly the Gulf of Lion and the Pelagos Sanctuary. They total 52640 km of effort.



Figure 4: Spatial coverage of surveys shared by France.

C/ Spain
The surveys provided by Spain (Figure 5) cover the West part of the Western Mediterranean
region covering the coast and waters of Spain. The survey data gathered so far total 22603 km
of effort. Spain surveys include a recent ship survey MEDIA conducted in 2022 and 2023
along the coasts of Spain. Two aerial surveys DMESAL and DMLEBA have also been
collected in 2023 in the Spain waters. A third aerial survey ICCAT is available. This survey
flying over the Balearic islands originally aimed to collect information about tuna species, but
also collected data on marine megafauna. I have received the data of 2015 for this survey.
Data from other years are also available. As I received them mid-March; they have not been
included in this report. In this report ICCAT data from 2015 only have been included.

Figure 5: Spatial coverage of surveys shared by Spain.



2/ Data Preparation

A first important step to collate data from different surveys is to homogenize and
format all data in the same way so they can be used together. In this step, effort data of each
survey have been checked to include effort collected when at least one observer was present.
Effort over land, during circle backs and unstandardised effort were excluded. Boat and plane
speed, and plane altitude greatly influence detection probability. To start analyses, effort data
were kept if the speed was between 8 and 16 knots for boats and between 50 and 150 knots
for planes. Plane altitude was limited from 150 to 400 meters. These values might be
restricted if high heterogeneity in detection probability is revealed in the distance sampling
model.

In a second step, efforts were linearised to avoid increasing the actual covered and sampled
area. Effort data were then cut into segments of about 10 km, the conditions of observation
including the number of observers, the altitude of observation, the sea state and the subjective
conditions remaining similar along each segment. After this preparation, the effort data were
collated.

The sightings data were also checked and prepared. Data were included if information about
species name, group size, spatial location, date and time of the sighting, perpendicular
distance, and observation side were available. Using this information, each sighting was
linked to the effort segment it was observed on, in order to gather the condition of observation
of each sighting that influenced detection probability.

A first filter was applied on species name and the following species were retained: fin whale
Balaenoptera physalus, common dolphin delphinus delphis, risso’s dolphin Grampus griseus,
pilot whale Globicephala melas, sperm whale Physeter macrocephalus, striped dolphin
Stenella coeruleoalba, bottlenose dolphin Tursiops truncatus, Cuvier's beaked whale Ziphius
cavirostris, and sightings of unidentified ziphius species, large whales, small and medium
cetaceans.

A/ Bottlenose Dolphin
361 sightings of individuals or groups of bottlenose dolphins (Figure 6) are available in the
collated and prepared dataset. Many of these sightings have occurred in the Gulf of Lion and
in the Pelagos Sanctuary.



Figure 6: Spatial distribution of the sightings of Bottlenose dolphins on gathered effort.

B/ Sperm whale
59 sightings of individuals or groups of sperm whales (Figure 7) are available in the current
collated and prepared dataset. A lot of them occurred in the Pelagos Sanctuary.

Figure 7: Spatial distribution of the sightings of Sperm whales on gathered effort.

C/ Fin whale
234 sightings of individuals or groups of fin whales (Figure 8) are available in the current
collated and prepared dataset. Most of these sightings were observed in the Gulf of Lion and
in the Pelagos Sanctuary.



Figure 8: Spatial distribution of the sightings of Fin whales on gathered effort.

D/ Cuvier’s beaked whale
29 sightings of individuals or groups of Cuvier’s beaked whales (Figure 9) and 6 sightings of
unidentified ziphius species are available in the current collated and prepared dataset. I intend
to group both types of sightings to increase the number of data points to analyze the densities
of Cuvier’s beaked whale in the Western Mediterranean region as the sightings are
widespread in the region.

Figure 9: Spatial distribution of the sightings of Cuvier’s beaked whales on gathered effort.



E/ Other species
Among other species available, one observation of rough-toothed dolphin (Steno bredanensis)
has been removed. 40 sightings of long-finned pilot whales, 80 sightings of Risso dolphins,
35 sightings of common dolphin and 1792 sightings of striped dolphins (Figure 10 for this last
species) were kept in the current collated and prepared dataset. They will be used to improve
the estimates of detection probability in the distance sampling model (see below).

Figure 10: Spatial distribution of the sightings of Striped dolphin on gathered effort.

3/ Environmental Variables

The densities of cetacean in the Pelagos Sanctuary will be predicted from density
surface models (Buckland et al. 2015, Miller et al. 2013) and marine environmental variables
characterizing the area using relationships between environmental variables and cetacean
densities estimated along the effort data. These models will not directly reflect the habitat of
cetacean populations or their true distribution, but will reflect maps where cetaceans are
expected to occur.

Marine environmental variables have been used in previous studies to predict the density and
distribution of marine mammals (Astarloa et al. 2021, Virgili et al. 2019, Waggitt et al. 2020).
The two main challenges we face with cetacean species are their wide distribution and large
movements making their distribution highly dynamic among and within years. Their
distributions result from complexe interactions of ecological processes including
oceanographic and biological components (Croll et al. 1998, Barlow et al. 2020). Food
availability plays a major role for their distribution (Benoit-Bird & Au, 2003; Hastie et al.,
2004; Frederiksen et al., 2006). Unfortunately, robust data on the dynamics distribution of



most prey of cetaceans are not available within the whole studied region, preventing us from
directly using prey data to predict cetacean densities (Guisan & Zimmermann, 2000).
Nevertheless, prey distribution can be correlated to oceanographic and physiographic
environmental variables easier to collect at large spatial scale and with higher robustness
(Forney 2020). These oceanographic variables are thus relevant to predict cetacean densities
(Redfern et al., 2006, Forney 2020).

A candidate set of static and dynamic variables has been selected based on their use in
previous models of cetacean densities and their accessibility at large spatial scale. They are
summarized in table 2.

Table 2: Marine environmental covariables downloaded to predict densities of cetacean species.The
static variable bathymetry was downloaded from the website of EMODnet (https://emodnet.ec.
europa.eu/en/bathymetry). Other static variables: slope, aspect and roughness of the sea floor were
derived from the variable bathymetry using the function terrain of the package terra (Hijmans et al.
2022) in the statistical software R. The dynamic variables: sea surface temperature, net primary
productivity and marine currents were downloaded at a monthly temporal coverage from 2001 to 2023
from the website of Copernicus Marine Service (https://data.marine.copernicus. eu/products). Monthly
temporal scale was chosen as the trade-off to minimize the amount of data download and to maximize
potential predicted scale. Sea surface temperature gradient was derived from the sea surface
temperature using the function DetecFronts of the package grec (Wencheng 2024) in the statistical
software R.

Environmental variable
Original
scale

Justification Source

Static

Bathymetry
(m)

1/16 arc
minute

Deep and shallow column waters influence
the presence of variable preys (e.g. squids

or fish species)

EMODnet

Slope (rad)
Associated with currents, high slopes
induce enhanced primary production or

prey aggregation

Aspect (rad)

Describe currents and prominent structures
such as canyons, seamounts or mountain
chains, used as proxies for predator

hotspots and useful in locations where
access to biological data is limited

Roughness
(m)

Describe micro-irregularities in space,
revealing heterogenous sea floor potentially

enhancing diverse habitats and fish
assemblages

Dynamic

Sea surface
temperature
(SST) mean

(°C)

0.083
degree

Variability of SST over time and space
influences directly prey and cetacean

distributions
Copernicus



Sea surface
temperature
gradient
(°C/m)

Horizontal gradients of SST reveal front
locations, mixing of water and is associated

with enhanced primary

Eddy kinetic
Energy

(EKE ; m/s)

High EKE are linked to the development of
eddies, upwelling of nutrients and enhanced
primary production, which induce prey

aggregation
Net primary
productivity
(NPPV ;

mg.m-3.day-
1)

0.25
degree

Net primary production is a proxy of
zooplankton distribution, feeding cetacean

preys

Environmental variables were used to prepare prediction grids covering the Pelagos Sanctuary
area and the Western Mediterranean MFSD region. Grids of 10km² resolution were prepared
to be consistent with prepared segments of effort that have been cut every 10km.
Environmental variables were also associated with the centroid of each segment of effort to
perform the gap analysis and the density surface model.

4/ Gap Analysis

Cetacean densities are going to be predicted using the density surface model from the
marine environmental variables characterizing the Pelagos Sanctuary area and the western
Mediterranean region. However, depending on the temporal resolution we chose to predict
these densities, some of the predictions will occur in areas poorly informed by available data.
To inform decision makers and stakeholders about the limits and uncertainty of the upcoming
results, a gap analysis was performed. This gap analysis highlights areas where predictions of
cetacean densities will be highly uncertain because informed by few data.

A/ Descriptive information
Originally in the consulting call, density maps were required for three periods: before 2004,
from 2004 to 2013 and from 2014 to 2023. The data collected so far showed that we do not
have any available data before 2009 (Figure 11). Thus, the available data make it impossible
to get predictions of densities in the first period. A first summary of the collated effort data
also revealed an unbalanced coverage of seasons and years. Most of the data were collected in
June, July and October. The years 2023 and 2012 are more represented than other years. The
years 2009, 2010, 2015, 2019 and 2021 total also a fair amount of effort data.



Figure 11: Number of kilometers of effort gathered per month (A) and per year (B), all surveys
included.

In figure 12, the number of available kilometers of effort is shown according to the season
and the period of data collection on a logarithmic scale. This figure reveals very little data for
purple, blue to dark green colours. Grey areas were not covered by any survey. From this raw
analysis, we can see that the Pelagos sanctuary was very well covered mainly in the winter
and summer of the first period, namely by the PELAGOS survey. It also reveals that in fall of
the first period and spring of the second period, the Pelagos sanctuary was poorly covered.
However, conclusions are less obvious for other seasons.



Figure 12 : Spatial coverage of the number of kilometers of effort gathered per period and season.

B/ Analysis
To be able to understand how all data from the Western Mediterranean region can inform



prediction in the Pelagos Sanctuary, a gap analysis was performed. The gap analysis assumes
that the Western Mediterranean region is a complex ecosystem that can be characterized by
marine environmental variables (Tew Kai et al. 2020), the same ones as we described in the
previous section. These environmental variables define an environmental space that shares similar
or variables sea floor topography, current, surface temperature or primary production values in
each season and period. This environmental space can thus be studied with geometric tools
including distance and hulls to realize a gap analysis. It will reveal spatial areas where predictions
will be extrapolated (i.e. not informed by data but extrapolated from the model only) and areas
where predictions will be interpolated from data (i.e. well informed by data) (Authier et al. 2017;
Bouchet et al. 2019).

The first step of this gap analysis is thus to study how the available data covered this
environmental space. An environmental space must be seen as a space of N-dimension where each
dimension is a marine environmental variable. If we consider only two environmental variables as
an example, a simple polygon including all data points can be created from the observed values of
both environmental variables at the centroid of each effort segment. The second step is to build the
environmental space of the predicted area. Then, this analysis will reveal the gaps between the
predicted and data-based environmental spaces and will allow us to map these gaps as
extrapolations on the predicted maps.

A first result of this gap analysis informs about the extrapolated or interpolated value of each
prediction point. The prediction points are the centroids of the cells including in the predicted
maps (the different cells are visible on figure 13). I analysed if each prediction point was included
or not within the data-based N-dimension environmental space. If a predicted point is included
within this data-based environmental space, the associated prediction is considered as an
interpolation while if the point is outside of the data-based environmental space, it is considered
as an extrapolation (Figure 13).
In a second analysis, we can also map the different prediction points within the N-dimensional
space and relatively to the data-based environmental space and analyse how each prediction point
is well surrounded or not by data points. The second measure of this gap analysis derives the
percentage of data points that are nearby each prediction point to inform it in the environmental
space. This «nearby analysis» informs about the percentage of data that are used to make a
prediction (Figure 14).

C/ Results
The extrapolation analysis (Figure 13) shows that separating the data in two periods will result in a
high proportion of areas extrapolated. The predictions will be more robust if all years are pooled
together. In this case only predictions in spring will mainly be extrapolations (i.e. fully
extrapolated by the model and not directly informed by the data). Summer and fall predictions will
mainly be interpolations (i.e. well informed by the data) while winter predictions will be a
combination of both inter- and extra-polations. Note that the results of the gap analysis do not
directly match raw Figure 12 because dynamic covariables were included at a monthly resolution
on the effort data while they were included at a seasonal resolution in the prediction maps. Thus
environmental spaces of dynamics variables between monthly and seasonal average may vary.



Figure 13: Gap Analysis: Interpolated and Extrapolated predictions per season and period. Systematic
red points shared by all maps may reveal missing environmental variables that will be further checked
in next analyses.

The nearby analysis (Figure 14) reveals the same main patterns as the extrapolation analysis with
more details. It shows that if we combine all years, winter predictions in the Western part of the
Pelagos Sanctuary would be particularly well informed by data. In fall, the western part of the
Pelagos Sanctuary would also be better informed by data than the eastern part, while the opposite
would be true for summer predictions.



Figure 14: Gap Analysis: Percentage of data informing the prediction in each cell of the prediction
grid per season and period. Systematic purple points shared by all maps reveal missing environmental
variables that will be further checked in next analyses.



5/ Method to estimate cetacean densities along effort data

Some animals remain undetected along transects. The probability of detection often
varies with species and environmental conditions including the survey platform of
observation, the meteorological conditions and the marine conditions during the survey. The
probability to detect an individual or group of individuals often decreases with increasing
distance to the transect line (Miller et al. 2017). Distance sampling models are commonly
used to estimate the probability of detection for a given species in a given survey (Buckland
et al. 2001, Buckland et al. 2015). The declining detection probability is modelled by a
decreasing function, often a half-normal or a hazard rate function (Buckland et al. 2015). This
function is fitted to the observed number of detections according to observed perpendicular
distances to the transect line (Figure 15). Distance sampling models aim to estimate the area
actually covered by the survey. To do this, they estimate the effective strip half width (ESW),
the distance at which as many animals are seen beyond it as are missed up to it, to deduce the
effective area sampled during the line transect survey (Buckland et al. 2001). This value
accounts for the missing individuals and is used to derive corrected animal densities.

Figure 15: Fit of detection functions (dark blue) on histograms of the number of sightings per km to
the transect line on three different species: the minke whale (bacu), the Cuvier’s beaked whale (zcav)
and the common dolphin (ddel). This figure was adapted from Plard et al. 2024 and the data were
collated during the Cetambicion project. Red lines show the estimated ESW. Dotted lines show
uncertainty (95% credible intervals) around the mean (plain line) for ESWs and for detection functions
(blue).

This analysis gives robust results for common species with many detections but results are
more uncertain for rare species (Buckland et al. 2015, Miller et al. 2017, Figure 15). To
increase the accuracy and precision of estimated ESW, I will use a new methodology (Plard et
al. 2024) based on pooling information from multiple species and surveys. Pooling
observations with expected similar detection functions is a statistical technique to increase
precision (Marques et al. 2007). However when pooling multiple survey and species, one
must also account for the heterogeneity in detection probabilities among survey and species
(see pooling robustness, Buckland et al. 2015, Rexstad et al. 2023) as pooling species or
survey with heterogeneous detection functions would result in higher bias in ESW. Sighting
data from multiple surveys and species shared common information about the influence of the
increasing distance from the transect line and the environmental conditions on the probability
to detect individuals. In this new methodology, this information will be used to increase
precision in ESW using fusion effects (Malsiner-Walli et al. 2018, Plard et al. 2024). Fusion
effects are state of the art statistical methods that allow the clustering of homogeneous



categories of one variable automatically (Malsiner-Walli et al. 2018, Miller and Harrison 2018,
Hu et al. 2022). Implemented in distance sampling models, this new method allows grouping
surveys and/or species with homogeneous detection probabilities automatically while keeping
apart heterogeneous ones. This methodology has been tested using simulation analyses and
showed that in all cases, results using fusion effects were as or more precise and accurate than
common distance sampling models (Plard et al. 2024). An example of the results obtained
using fusion effects in distance sampling models vs. common distance sampling models is
presented in Figure 16.

Figure 16: Example of ESW of 9 species estimated from a distance sampling model using fusion effect
(red) and a common distance sampling model (grey). Adapted from Plard et al. 2024.

In the current analysis, I will analyse separately ship and plane surveys to account for the
heterogeneous detection probabilities in aerial and ship surveys. Because this call aims to
predict the densities of rare species (sperm whale, Cuvier’s beaked whale and fin whale), I
will include all data collected in Beaufort lower than 6 and I will add Beaufort as an
explanatory variable in the model to account for variable probability detection in variable
marine conditions. I will also include the subjective conditions variable as a continuous
variable from 1 to 4 to account for the effect of bad environmental conditions on detection
probabilities. Finally I will include all cetacean species included in the collated prepared
dataset in distance sampling models and I will use fusion effects on species and survey to
make the most of available data from all species and improve accuracy and precision of
estimated ESW of rare species.



6/ Method to estimate abundance and density maps

The results of the distance sampling model will be the densities of cetaceans on each segment
of the effort data deduced from the number of detected animals and ESW. Because distance
sampling models assume perfect detection on the transect line, we need to further correct the
estimated animal densities by bias availability (Marsh & Sinclair 1989, Buckland et al. 2004,
Barlow 2015) before using them to estimate abundance and density maps. The most common
reason why cetacean individuals are not available to be detected is them being submerged
when diving. This availability bias is particularly important in species such as sperm whale,
fin whale and Cuvier’s Beaked whale. Previous estimate of bias availability in the literature
(Virgili et al. 2019, Sigournay et al. 2020, Okamura et al. 2012, Laran etal. 2017) and
estimated in similar surveys using robust protocol (SCAN IV, Gilles et al. 2023) will be used
to correct animal densities.

Finally, corrected animal densities will be used in density surface models (DSM, Elith, J. &
Leathwick 2009, Buckland et al. 2015, Miller et al. 2013) to estimate the relationship between
cetacean densities and environmental variables (listed in table 2). Because we expect complex
relationships between environmental variables and cetacean densities (see environmental
variables part), I will use additive generalized linear models (GAMs) as they are able to
account for highly flexible relationships (Wood 2006). For each species, a set of models
including a combination of selected environmental variables will be run. This combination
will include a maximum of four covariates to avoid excessive complexity of models and
difficulty in their interpretation (Mannocci et al., 2014), and this combination will exclude
correlated covariates. The five best fitting model will be selected using the Leave-one-out
Information Criterion (LOOIC) developed by Vehtari et al. (2017, 2020). To avoid losing any
important effect and getting results reflecting a model choice only, the five best selected
models will be averaged using a stacking method (Yao et al. 2018). This method combines
and weights the predictions of different models to get averaged predictions. Densities of each
species in the Pelagos sanctuary will be predicted using these five staged best models from
the environmental covariates describing the Pelagos Sanctuary area. To reflect the uncertainty
in predictions, coefficient of variation of animal densities will also be estimated.

7/ Conclusion

Most requested data collected using a distance sampling protocol have been gathered,
but other will be added once received (surveys ICCAT and Pelagos 2009 in summer). The
results of this intermediate report will thus evolve.

The current collated data reveal high variation in temporal coverage. These results
recommend building for each species an average map pooling all years together. Doing that,
the gap analysis shows that a robust map could be built for each season except spring. This
season will remain poorly informed by the data. These results mainly apply to common
species such as the bottlenose dolphin. However, the densities of rarer species including the



sperm whale, and the Cuvier’s beaked whale might be predicted with high uncertainty form
the DSM due to the low number of sightings in the collated data. Depending on the results
and their uncertainty, we can consider looking for and requesting additional specific dataset to
increase the number of sightings of these rare species. These dataset might increase the
number of observed detections but also increase the heterogeneity of data. In particular they
can be very difficult to use if detection probability cannot be estimated from the protocol or if
effort was not quantified.

From these analyses, the following deliverables should be produced per season (except spring)
and for the following species: bottlenose dolphin, striped dolphin, long-finned pilot whale,
Risso dolphin, sperm whale, fin whale and Cuvier’s beaked whale:

- Maps of extrapolations/interpolations
- Abundance estimates in the Pelagos Sanctuary and the 95% credible interval
- Map of densities: average and coefficient of variation in the Pelagos Sanctuary

Similar deliverables will be produced at the scale of the Western Mediterranean region.
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